Expanded polyglutamine domain proteins bind neurofilament and alter the neurofilament network.

نویسندگان

  • Y Nagai
  • O Onodera
  • J Chun
  • W J Strittmatter
  • J R Burke
چکیده

Eight inherited neurodegenerative diseases are caused by genes with expanded CAG repeats coding for polyglutamine domains in the disease-producing proteins. The mechanism by which this expanded polyglutamine domain causes neurodegenerative disease is unknown, but nuclear and cytoplasmic polyglutamine protein aggregation is a common feature. In transfected COS7 cells, expanded polyglutamine proteins aggregate and disrupt the vimentin intermediate filament network. Since neurons have an intermediate filament network composed of neurofilament (NF) and NF abnormalities occur in neurodegenerative diseases, we examined whether pathologic-length polyglutamine domain proteins also interact with NF. We expressed varying lengths polyglutamine-green fluorescent protein fusion proteins in a neuroblast cell line, TR1. Pathologic-length polyglutamine-GFP fusion proteins formed large cytoplasmic aggregates surrounded by neurofilament. Immunoisolation of pathologic-length polyglutamine proteins coisolated 68-kDa NF protein demonstrating molecular interaction. These observations suggest that polyglutamine interaction with NF is important in the pathogenesis of the polyglutamine repeat diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate

The phosphorylated carboxyl-terminal "tail" domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miya...

متن کامل

Identities of Sequestered Proteins in Aggregates from Cells with Induced Polyglutamine Expression

Proteins with expanded polyglutamine (polyQ) tracts have been linked to neurodegenerative diseases. One common characteristic of expanded-polyQ expression is the formation of intracellular aggregates (IAs). IAs purified from polyQ-expressing cells were dissociated and studied by protein blot assay and mass spectrometry to determine the identity, condition, and relative level of several proteins...

متن کامل

The C-terminal tail domain of neurofilament protein-H (NF-H) forms the crossbridges and regulates neurofilament bundle formation.

In order to study the role of NF-H in a neurofilament network formation in neurons, we coexpressed NF-H with neurofilament protein-L (NF-L) in Sf9 cells using the baculovirus expression system. Electron microscopy observations revealed that parallel arrays of 10 nm filaments with frequent crossbridges between adjacent filaments were formed in the cytoplasm of Sf9 cells infected with the recombi...

متن کامل

Composite bottlebrush mechanics: α-internexin fine-tunes neurofilament network properties.

Neuronal cytoplasmic intermediate filaments are principal structural and mechanical elements of the axon. Their expression during embryonic development follows a differential pattern, while their unregulated expression is correlated to neurodegenerative diseases. The largest neurofilament proteins of medium (NF-M) and high molecular weight (NF-H) were shown to modulate the axonal architecture a...

متن کامل

Mitochondrial and axonal abnormalities precede disruption of the neurofilament network in a model of charcot-marie-tooth disease type 2E and are prevented by heat shock proteins in a mutant-specific fashion.

Mutations in NEFL encoding the light neurofilament subunit (NFL) cause Charcot-Marie-Tooth disease type 2E (CMT2E), which affects both motor and sensory neurons. We expressed the disease-causing mutants NFL and NFL in motor neurons of dissociated spinal cord-dorsal root ganglia and demonstrated that they are incorporated into the preexisting neurofilament network but eventually disrupt neurofil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental neurology

دوره 155 2  شماره 

صفحات  -

تاریخ انتشار 1999